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Abstract

The problem of planning the motions of a robot snakeboarder consisting of a snakeboard and a flywheel mounted on it and
capable of performing controlled rotation relative to the snakeboard crossbar is investigated. Programmed control of the wheel axes
to provide an assigned path of motion of an arbitrary point on the crossbar is described. A control of the angular acceleration of the
flywheel on the snakeboard that ensures a required course of variation of the velocity of the crossbar centre both on a horizontal
plane and on an inclined plane is constructed. The problem of the maximum acceleration of the snakeboard along a “figure-of-eight”
trajectory is solved.
© 2006 Elsevier Ltd. All rights reserved.

The snakeboard was invented in 1989 by Fisher and McLeod-Smith.! The central part of the snakeboard is the
crossbar, which rests on two pairs of wheels (trucks) at its ends (Fig. 1). The trucks can rotate relative to the crossbar
about parallel axes, i.e., the truck pivot axes, which are rigidly oriented relative to the crossbar and are perpen-
dicular to the rotation axes of the wheels. Footplates parallel to the wheel axes are mounted on the truck pivot
shafts.

Owing to its design and the special coordinated action of the rider’s feet and body, the snakeboard, unlike the
skateboard, performs wave motion near the direction selected by the rider, enabling the rider to pick up speed without
pushing a foot against the ground, even if the motion is upward along an incline. With time, an aggressive skating style
accompanied by various tricks has been developed for snakeboards, and snakeboarding has become an extreme form
of sport. World snakeboard championships have been held annually since 1994 (except in 1998).

When there is no slipping of the wheels relative to the supporting surface, the snakeboard is a non-holonomic
mechanical system with nine degrees of freedom and four non-integrable constraints. If slipping of the wheels occurs,
the system becomes more complicated because information regarding the forces that appear in the contact area between
each wheel and the supporting surface is needed to close the mathematical model. When the rider standing on a
snakeboard performs relative motions, the system becomes even more complicated.

It would be natural to investigate snakeboard dynamics using the methods of non-holonomic mechanics.!> At the
same time, it is clear that essentially all the degrees of freedom of the system experience hard servo control** on
the part of the rider and that the velocity field of the crossbar is rotational around the point of intersection of the
wheel axes and obeys the theorem of angular momentum about this point. From a mechanical point of view, the
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crossbar—rider system is similar to a system of bodies that perform plane-parallel motion, with the crossbar being
free to rotate under the controlled action of the flywheel (the rider’s body) about some centre of rotation on the
supporting plane. The position of the centre of rotation, in turn, can also be altered at will. In a similar problem of
control of the motion of a physical pendulum using a flywheel, the position of the centre of rotation was fixed both
on the pendulum and in space in Ref. 5. An example of a more complicated system, controlled using a flywheel, was
investigated in.°

In this paper, the servo constraints needed to control a snakeboard are written using fundamental theorems of the
mechanics of the system. The approach developed enables us to deliberately alter both the magnitude and direction of
the velocity and to construct the desired trajectory of any assigned point on the crossbar when all four wheels of the
snakeboard are in contact with the supporting surface. The properties of the motion of such a system provide a striking
illustration of the concept of an instantaneous velocity centre, as well as the theorem of angular momentum about a
moving point. The non-bearing phases of the motion are not considered.

1. Statement of the problem

A mechanical system consisting of a snakeboard (Fig. 2) supplemented by a flywheel (F) which rotates about an
axis parallel to the truck pivot shafts (TPS) and passes through the middle of the crossbar (C) is investigated. The
presence of drives fastened to the crossbar and intended to control the rotation of the flywheel and to alter the direction
of the wheel axes (WA), respectively, is assumed.

Suppose all four wheels of the snakeboard are in contact with the supporting plane. We rigidly attach the moving
Cxyz system of coordinates to the snakeboard crossbar. We place the origin C at the middle of the crossbar, and we
direct the Cx axis along it, the Cz axis perpendicular to the supporting plane in the direction pointing away from it,
where the snakeboard is located, and the Cy axis perpendicular to the crossbar and the Cz axis, so that the entire system
of coordinates is right-handed. We assume that the crossbar has a length 24, that the left-hand wheel pair is attached to
it at the point A = (—a, 0, 0) and its axis makes the angle ¢ + /2 with it, and that the right-hand wheel pair is attached
to it at the point D =(a, 0, 0) and its axis makes the angle ¢, +7/2 with it. Each wheel cannot slip in the direction
perpendicular to the plane of the wheel. Then, the velocities of the points of articulation of the crossbar with the pivot
shafts of the wheel pairs will be directed along the supporting plane perpendicularly to the wheel axes. It is required
to find the laws for the autonomous control of the wheel axes and the flywheel that ensure a priori assigned motion of
the crossbar from a state of rest.
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2. The kinematics of the snakeboard

The instantaneous velocity centre of the crossbar lies at the intersection of the wheel axes, and in the Cxyz axes it
has the coordinates
sin(@; +9,) 2 COS (P, COSP,
Xy = A——————, Yy, = 2a——— 2.1
v sin(Q, - @) v sin(@, - @) @D
As ¢2 — @1 —> wk (k=0, £1, £2, ...), the instantaneous velocity centre tends to infinity. If the coordinates of the
instantaneous velocity centre are specified, the angles of rotation of the wheel axes can be found from the equalities
a+x, a-x,
g = - v g, =

v v

(2.2)

Let Oén{ be an absolute right-handed system of coordinates for which the O axis is directed along the Cz axis. In
it (&, m¢, L) are the coordinates of the point C. The Cx axis makes an angle {s with the O axis. Let us find the absolute
coordinates of the instantaneous velocity centre

€, = E.+x,cosy —y, siny, M, = M, +x,siny+y, cosy (2.3)

The velocity field of a rigid body was constructed’, such that the absolute velocity of the instantaneous velocity centre
as a fraction of the crossbar is equal to zero. Therefore, for the velocity of the crossbar centre we have

€ = Y(xysiny +y,cosy), M, = Y(-x,cosy + y,siny) (2.4)

and for an arbitrary point (x, y, z) in the Cxyz axes, which is rigidly attached to the crossbar, the absolute velocity is
given by the equations

§ = —Yl(x—x,)siny +(y—y,)cosyl, N = Yl(x—x,)cosy—(y-y,)siny] (2.5)

For fixed values of the angles ¢ and ¢, both the relative position of the instantaneous velocity centre in the Cxyz
axes and its absolute position in the Oén{ axes are maintained. If the angles ¢ and ¢, depend on time, the instantaneous
velocity centre will be displaced, and it will describe a moving centroid in the Cxyz axes and a fixed centroid in the
Oénl axes. The velocity of the instantaneous velocity centre over the moving centroid is expressed by the formulae

_a(,ysin2¢@, — §;sin2¢,) v = 2a(¢1cos2(p2—(b2cos2(p1)
- . ’ v - .
sz(‘-Pz—(Pl) sz((Pz_(Pl)

v

and the components of the velocity of the instantaneous velocity centre over the fixed centroid has the form
Eu =k 008y —y,siny, M, = K siny +y,cosy (2.6)
If the velocities i, and y, are known, the angular velocities of the wheel axes are given by the equations
@ x)V v, (@ x)Vy v,

1= ———> 5 0= > 2.7
(a+x,)" +y, (a—x,)" +y, 27

By assigning the centroids, we can generate the required motion of any point B =(x, 0, 0) on the crossbar. When
x=0, point B coincides with point C, and when x = +a, point B coincides with one of the ends of the crossbar.

2.1. We will require, for example, that point B should move parallel to the O£ axis.

According to (2.5), this means that the following condition should hold

N = y[(x—-x,)cosy +y, siny] = 0
Assuming that (s # 0 (motion occurs), we hence find
(x=x,)cosy + y, siny = 0 (2.8)

This equality still does not uniquely define the fixed centroid.
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In particular, we can additionally require that the crossbar moves translationally. We introduce the notation
2 2, .2
Po = Xp+ Yy 2.9

For the square of the distance from point C to the instantaneous velocity centre. Translational motion of the crossbar
with velocity v is obtained for p, — oo, {s — 0, for which {sp, = v. Then, from equalities (2.8) and (2.2) it follows
that

X
limy—v = tgy, limtge, = limtgg, = ~tgy as p, >
v
Stated differently, the wheel axes must be parallel to the On axis.
Another additional condition can be adopted by assigning, for example, the distance p, = /x2 + y from point C
to the instantaneous velocity centre. Then, along with (2.8) we obtain

2 2 2 2 2 2
tt 1+t - —-xtgy * I+t -
o=t gy p3(1 +1g’y) - x Ly, = ey b1 +1g'w) - x (2.10)

1+ tgzw 1+ tgz\v

These expressions have meaning for any value of { when p% > x2. The equation of the moving centroid is given by
(2.9), and for a constant value of p, it corresponds to a circle. The fixed centroid is defined by the equalities

€, = E.+xcosy, m, =7t A/pi—xzcosz\p

In this case, point B will move rectilinearly along the O§ axis with velocity

Ep = —Y(xsiny +M,.-n,)

The equations presented for the rectilinear motion of point B are simplified considerably when x =0, i.e., when point
B coincides with point C. Then, when the signs are chosen appropriately, we obtain

x, = Epysiny, y, =*pycosy, &, =&, M, =n.%p, & = 1yp, (2.11)

We will chose the plus sign on the right-hand sides of formulae (2.11). Then, for constant p,, the fixed centroid is a
straight line parallel to the O axis. Point C is at the distance p, from it in the direction of the origin of coordinates,
the absolute vertical coordinate of point C remains constant, and for a positive value of s, the absolute horizontal
coordinate of point C increases.

Similarly, if we take the minus sign on the right-hand sides of formulae (2.11), for constant p, the fixed centroid
is a straight line parallel to the O§ axis, as in the previous case. However, in this case this centroid is at the distance
py from point C in the direction of the origin of coordinates O. The absolute vertical coordinate of point C remains
constant, and for a positive value of {s the absolute horizontal coordinate of point C decreases.

For constant p, the velocity of point C is proportional to {s. In order for the direction of motion of point C to remain
unchanged when the sign of s changes, the sign on the right-hand sides of formulae (2.11) should alternate at the time
when s = 0. The motion of point C will be strictly in one direction if the sign reversal operation is performed almost
instantaneously. In any case, however, the motion of point C will occur with stops when s = 0.

It is possible to avoid the stopping of point C when s = 0. To achieve this, the instantaneous velocity centre must
tend to infinity at times corresponding to s = 0. For example, taking into account that x=0, we can stipulate that

Py = 2a/(xVy) (2.12)

where k is a constant coefficient that has the dimension of time. Thus, for any law s ={i(¢) that defines the angular
motion of the crossbar, where 7 is the time and the existence of the derivative ll) is assumed, point C will undergo linear
motion parallel to the O¢ axis with a constant velocity, whose direction depends on the sign of the coefficient k; the
smaller the value of |k|, the greater the velocity of point C.

2.2. Let us consider motion for which point A is displaced strictly along the O§ axis and point D is displaced strictly
along the On axis. Then point C will be forced to move along an arc of a circle of radius a, whose centre is at point O.
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In this case,

QO =Y, @, =T7/2-Vy, x,=-acos2y, Yy, = asiny

As would be expected, the moving centroid is a circle of constant radius p, = a, whose centre is at point C. Furthermore,

€. = —acosy, M, = asiny, &, = -2acosy, M, = 2asiny

and the fixed centroid is a circle of constant radius 2a, whose centre is at point O. The velocity of point C is expressed
by the equations

f;c = Yyasiny, 1N, = Yacosy
When s > 0, point C moves clockwise if it is viewed from the positive direction of the O( axis.

2.3. Let us investigate a version of the motion in which the crossbar is directed along a tangent to the trajectory of
an arbitrary point on it. We again take some point B = (x, 0, 0) on the Cx axis. For simplicity we will assume that

(a+x)tgQ, = (x—a)tge, = (@’ —x)/d (2.13)

where d has the dimension of length. Then, from (2.1) and (2.5), we obtain
x,=x, y,=d, p,=Ax+d, & = ydcosy, M, = ydsiny (2.14)

In other words, the velocity v, = &, + nz of point B is proportional to d, and the angle of inclination of the tangent to
the trajectory of point B coincides with the inclination of the crossbar to the O axis:

v, = dl, dn,/d§, = gy

If d is chosen to have a constant value, the instantaneous velocity centre is a fixed point in the Cxy axes and, therefore
(see (2.6)), in the O&m axes. We have

E(1) —Eu(2y) = d(siny —siny,), mN,(7) =M,(t,) = —d(cosy — cosy,)

where i is the initial value of the angle . Point B moves along a circle of radius d, whose centre is at the point with
coordinates

€ = §,(1p) —dsiny,, M = n,(1y) +dcosy,

which coincides with the instantaneous velocity centre chosen in this case, and the crossbar is oriented along the tangent
to the circle at this point.

In the case where d varies, the moving centroid is a straight line passing through point B perpendicular to the
crossbar. For the motion of point B with a constant velocity along an arbitrary curve, we assume that

d _ i t _ a+xK. t _ a X .
Sy 89T TRV gy = Ty (2.15)

Then the fixed centroid coincides with the locus of the centres of curvature of an assigned trajectory of motion of point
B.

2.4. When formulae (2.15) are used, it is impossible to ensure rectilinear motion of point B. However, if the inequality
—m/2 << w/2 is satisfied during the motion, the motion will be oscillatory and, on average, will occur along the O&
axis (hence the name “snakeboard”). The required trajectory of motion of point B along the O§ axis can be assigned
by the continuously doubly differentiated function m, =m,(&p). Then we have cos ¢ >0 and

1 i "ne . an;;‘
gy =My, WZ =M&, ¥ = 2w
cos y k(l+mn,)

where the prime denotes differentiation with respect to &,. For example, we can take the relation

N, = asin(o[§-&,(7)]) + N, (%)
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For small values of the coefficients a and w, such a trajectory will differ only slightly from a straight line parallel to
the O¢ axis.
A trajectory of point B of fairly arbitrary form in a plane can be specified parametrically by

& =&(p). My =Mup) (2.16)

where p is a parameter of the trajectory. To determine the value of {s corresponding to such motion, we use Egs. (2.14)
and (2.15). Then

. L . o . a _a(my&,-n,Ep)
&bp=gcosw, n,p = glsm\v, gy = =, p= ————, Yy = —————
' . . 2 2.3

b b S KA/E,.,,z +n,,2 k(& +My)

where the prime denotes differentiation with respect to p. For the required motion to be possible, the initial conditions
must correspond to the conditions stipulated by (2.15). In particular, we should have

tgy(ty) = My(pt))/EL(p (1))

Let the crossbar be oriented relative to the O€ axis and make an angle o with it. Also let the standard equations of the
trajectory of point B be specified in some rectangular system of coordinates O’&f by the equations

E=E(p). 1 =1
The transformation of coordinates

£ = §0+<€,cosa—ﬁsina, n = n0+ésina+ﬁcosoc (2.17)
for which the equalities

E(to) = §0+E(0)cosa—ﬁ(0)sinoc, Ny(ty) = n0+é(0)sina+ﬁ(0)cosoc

cosy, = EOcosa-F(O)sina o E(0)sina+ 7 (0)cosx
_ 800 , , = B(0s
JE?(0) +77(0) JEX(0) +77(0)

hold for p =0, uniquely defines the functions (2.16) that match the initial conditions with the assigned crossbar position.
For example, we can take

an astroid: &, = rcos® p, 1, = rsin’® p

a cycloid: Eb =r(p—sinp), 7, =r(l—cosp)

a figure of eight: éb =rcosp, T, =rsin2p

an n-leaved rose: éb =rsin(6 —n)pcosp, T =rsin(6 —n)psinp, n=3,4

and other beautiful curves.
3. The angular momentum equation

We recall that the snakeboard is equipped with a flywheel, whose axis passes through point C parallel to the direction
of the pivot shafts of the wheelpairs (Fig. 2). The flywheel is rotated by a motor mounted on the crossbar. The angle of
rotation of the flywheel relative to the crossbar is denoted by ¢. Similarly, the wheel pairs are rotated by corresponding
motors, which are also located on the crossbar. We shall assume that there is no rolling resistance of the wheels over
the supporting plane and that the system has the property of mass symmetry about point C. This means that the centres
of mass of the crossbar and the flywheel are located at point C and that the masses and moments of inertia of the wheel
pairs are identical. Let the O( axis make an angle ¢ with the vertical so that the gravity force of the system, applied at
point C, in the Oén( axes has the form

P = -Mg(0, sin, cos¥)
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where M is the mass of the entire system and g is the acceleration due to gravity. When there is no longitudinal rolling
resistance, reactions parallel to the supporting plane are directed exactly into the instantaneous velocity centre of the
crossbar, impeding displacement of the wheels along their axes. Therefore, taking into account relations (2.3), we can
write the projection of the equation describing the variation of the angular momentum of the snakeboard together with
the flywheel relative to the instantaneous velocity centre of the crossbar onto the O axis in the form’

dK M . Sy o .

T Y(x X, + YY) = (x,cosy —y, siny)Mgsint (3.1
Here K is the angular momentum of the entire system about the axis passing through the instantaneous velocity centre
parallel to the O axis, and the expression in parentheses on the left-hand side of Eq. (3.1) is the projection of the vector
product of the velocity of the instantaneous velocity centre and the velocity of the centre of mass C onto the O axis.

By Koenig’s theorem,” we obtain

K = (Mpy+b)+ 7,0+ J,(01+62) (32)
where

M=m+mg+2m,, b=2ma +J+J,+2J,

m is the mass of the crossbar, m, is the mass of the flywheel, m,, is the mass of a wheel pair, J is the moment of inertia
of the crossbar together with parts of the wheel systems rigidly attached to it about to the C{ axis, J,, is the moment of
inertia of the flywheel about the same axis, and J,, is the moment of inertia of a wheel pair about its axis. It is easy to
see that

X X, + Y, V, = i(&))
ot YooYy = di\ 2
It follows from the formulae (2.1) that p% is afunction of the angles ¢ and ¢;, which are realized by the corresponding
drives. When the servo constraints® are selected in the form of functions that describe the dependence of p, on the
angles and angular velocities of the crossbar and the flywheel, Eq. (3.1) defines the mutual influence of the angular

accelerations of the flywheel and the crossbar. By assigning the required motion of the crossbar in this case, we can
obtain the variation of the angular acceleration of the flywheel that realizes this motion.

4. Programmed control

We will consider several examples in this section, ignoring the influence of the transients that occur when the servo
constraints® are imposed.

4.1. Servo constraints of the form p, = p,({s)

We set? 9 =0 (the supporting plane is horizontal). Equation (3.1) then becomes

dfg My 2\ Mo _
dt(K 2 pv)"' 2 pv—O

Hence it follows that if p, depends only on is, the angular momentum equation has a first integral
My 2 . . Me 2, .o
K-ZEpL+ F(Y) = o, F(¥) = 5 [o(¥)av @)

where o is the constant of integration.

2 Golubev Yu.F. Planning the motions of a robot snakeboarder. Preprint of the M.V. Keldysh Institute of Applied Mathematics, Russian Academy
of Sciences, No. 65, Moscow: Institute of Applied Mathematics; 2004.
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4.1a. Let the law §s =s;(¢) of the required angular motion of the crossbar be assigned, and let equalities (2.8) and
(2.12), which stipulate that point C moves in a straight line along the O£ axis with a constant velocity, be satisfied.
Then

2 2
2 4a . 2Ma
Po =55 Fl¥) =-—— (4.2)
K Y KW
The integral of the angular momentum for § = {s, takes the form
by, +J, 0+ J (01 +¢y) = 0O 4.3)

This integral was obtained under the assumption that, as follows from (2.2) and (2.12), the angles of the wheel pairs
satisfy the equalities
. K\i’
. = —lj—;—t ’ .=l,2
ge; = 15 cos v, gV J 4.4
Relations (4.3) and (4.4) taken together should be regarded as the set of servo constraints that ensure the crossbar
motion assigned using the programming function {s = {is(¢), provided the servo constraints are satisfied at the initial
instant of time. Since in reality the initial conditions can be arbitrary, the control of the motion of the flywheel and the
wheel pairs must ensure the relations’

VoV, 020, 0;—>¢;; as 1—oo 4.5)
Here and everywhere henceforth j=1, 2.

When we take into account that function ys¢(¢) is assigned and known, relations (4.5) define the geometric servo
constraints. To obtain the corresponding differential servo constraints, we must find

j+1..

iqj i X .. .2 .
- 2 q]‘ = 2_a(\VsCOS‘Vs+Ws Sln\Vs)"'(_l) Vs (46)

To construct the precise transient we also require the second derivatives of the functions (4.6):

.. .2 jCOSZ(Pjs . -
(pj: = _2(pjstg(pj5+(_1) 3 (qjCOSWs+2qu551nWs)
cos s (4.7)

j+1..

g; = %[(\'p’s+\i/i)cos\|ls+\'ﬂs\ilssin\|!s] +(=1)

In addition, we note that the second derivative of relation (4.3) can be represented, taking relations (4.2) into account,
in the equivalent form

2
d . 2 . . N A_l dpu _ 48
;;‘t[‘l!s(Mpu"'b)+Jg(ps+',w((pls+(p23)]_ 2"’:7 =0 (4.8)

4.1b. We will assume that the law s = {s4(f) of angular motion of the crossbar is specified and that equalities (2.15)
hold for it. In this case,
2 2
2 2. a . M| 2. a
Py = X + ==, F(¥y) = E(X %—T]
K Y K Y,
The integral of the angular momentum (4.1) takes the form
(M + b)Y, + T 0, + 1, (01,4 §p) = © (4.9)
and the angles @1 and ¢y, are given by the formulae

g0 = K, &, = x[(-1) - x/a] (4.10)
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Differentiation of the servo constraints (4.10) gives the equalities
. . 2 .. L2 L
0js = Kco8 @, @ = K;(W;008 @ — ¥, Q;,8in2¢;) (4.11)

The derivative of the servo constraint (4.9) can be converted to the form (4.8).

We see that the existence of not only the second derivative of the programming function ys;(f) with respect to time
but also of the third derivative is required to construct the transient by controlling the wheel pairs both in case 4.1a and
in case 4.1b.

4.2. A servo constraint of the form p,, = p, (¢, ¢)

Let ¢ =0 as before. The angular momentum equation (3.1) can be rewritten in the form
.. 2 M.d 2 .. L
W(Mpu+b)+iwa_tpu = —Jg(p_‘]w((pl +(‘pZ)

. . . _1
We will use the fact that the left-hand side of this equation has the integrating factor (i\ /Mp? + b) . Taking into
account the possibility of negative values of p,, we rewrite the equation in the form

d, . S0+ J,(01+9y) =
iVl = === = M bp) @.12)
v

We constrain the motions of the wheel pairs using relations (2.13), where, for simplicity, we set x=0. Then point
B coincides with the middle C of the crossbar, and p, =d, so that

189 = (-1)alpy, @1,+9y=0 4.13)
and the angular momentum equation for the programmed motion takes the form

d, . J ¢

—( ) = 4= 4.14

ar Yp,U AT (4.14)

4.2a. Under the condition p, = p,(¢), Eq. (4.14) has a first integral
d¢
Py

Vp U+ Fi(9) =05 F = Jgj (4.15)

Integral (4.15) indicates that if the function ¢ is periodic, the velocity v, = Uip,, of the middle C of the crossbar will
also be periodic. In other words, an endless increase in the velocity of point C will not occur in this case. For example,
letp, = k¢!, Then

Fy = 2J,(xb) " M + bx 7§’

and integral (4.15) takes the form

v, = 220,(xb) " 4o (M+ b9, oy = 2J,(xb) /M

4.2b. We specify a periodic law governing the variation of the angle ¢ using the equation
p+0Q=0 (4.16)
In addition, suppose p, =k ¢~ . Then Eq. (4.14) takes the form

d, . - _ _ -172
(¥, M+bp))) = T,k 0’9 (M +bx;"¢") 4.17)
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The right-hand side of this equation is non-negative. Therefore, for ¢ £ 0 the velocity v. = {sp, will increase, and, for
example, for ¢ =a cos w(t — fg) it can be made infinitely large. To illustrate this, instead of the exact equality (4.17),
let us consider the approximate equation

d. . i i
TP, M) = Tk o’ M " (4.18)

which characterizes the acceleration of the snakeboard at small values of the amplitude «. Let =7 — 7, Integrating,
we find

1)

2 2 . 2 3

J,o0 o ( sm2(m:) J 00 ( . 3cosWT + cos (ot—4)

. = T+ = TSin®T —
2%, /M 20 26°M 30

We see that a linear increase in the amplitude of the oscillations of the angle { with time, similar to the increase
previously found in Ref. 2, occurs in the wheel axis control regime selected.

4.3. Consider the possibility of acceleration of the crossbar in the case where the trajectory of the middle C is
specified. We shall assume that ¥ = 0. We shall also assume that the axial line of the crossbar is directed along a
tangent to the trajectory and that the wheel axes are controlled in accordance with relations (2.13), in which we set
x=0.

Suppose the trajectory is specified parametrically in the form
L _ glnn _ ntan
Py (§.2 +n,2)3/2 4.19)

The prime denotes differentiation with respect to p. When the integrating factor is taken into account (see Section 4.2),
Eq. (3.1) takes the form
A 1 " ' " il I2 |2 :
dpv,)  J8EM"-n'E") + Mgn'(§” +n")sind
dr 22312 (4.20)
HE™+M)
The quantity >0 does not vanish at any point along the trajectory, and it will also be restricted for trajectories that

do not have singularities. Hence we see that an increase in velocity along the trajectory is achieved when

JBEN" -NE") <-Mg'(§” +n?)sin®d .21

=28/, m=n(p),

and that a decrease in velocity occurs when the sign of the inequality is reversed. In other words, if ' <0, gravity starts
accelerating the snakeboard when sin?d >0, and to impart additional acceleration to it the angular acceleration of the
flywheel must be non-positive at points where the trajectory turns to the left relative to the direction of the tangent, and
it must be non-negative at points where the trajectory turns to the right. The absolute value of the angular acceleration
is clearly determined by the required magnitude of the velocity increment.

Conversely, if n/ > 0, gravity decelerates the snakeboard. Therefore, in accordance with inequality (4.21), a velocity
increment is achieved for strictly negative (strictly positive) values of the angular acceleration of the flywheel if the
trajectory is turning to the left (to the right).

When & = 0, the velocity will not be constant in the general case both because of the effect of gravity and because
of the variation of the radius of curvature of the trajectory: v = o/, where o is the constant of the integral of the
angular momentum for ¢ = 0 and sin? =0.

According to the equalities (4.13), the angles of the wheel axes are specified by the formulae

a 1 " — Al "
8Py, = —18Q; = ﬂ_zn__%_%) (4.22)
& +M")
The variation of the parameter p is given by the equation

. v
P =
/§,2 + 71'2 (4.23)

Thus, the system of equations (4.20), (4.19) and (4.23) is closed.
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To initiate motion, it is sufficient to attach the trajectory to the position of point C on the plane, set the angles of the
wheel axes according to the required radius of curvature, and impart angular acceleration to the flywheel in accordance
with inequality (4.21). The unavoidable errors in controlling the wheel axes result in distortion of the assigned trajectory
of motion. However, if extremely high requirements are not imposed on the quality of the programmed motions, the
trajectory of point C will have a definite similarity to the specified trajectory even in the absence of exact navigational
adherence to location. We also note that a constant increase in velocity is not required for realizing complex trajectories,
since slipping of the wheels relative to the supporting surface may occur.

4.3a. We specify the trajectory of point C in the form

1
n=n(p), §=p, = nzs/z

Pu (141D

Equation (4.2) can now be rewritten in the form

d(uv,)  Jon"+Mgn'(1+ n'z)sim‘}
- 3
at u(1+n%

(4.24)

The value of W does not vanish anywhere and is restricted in magnitude when the values of n/ and m” are restricted.
Therefore, to ensure an increase in the velocity of point C, it is sufficient to control the motion of the flywheel so that
the following inequality holds over almost the entire assigned acceleration trajectory

J 6" <-Mgn'(1 + n'z)sim‘) (4.25)

Conversely, to reduce the velocity, it is sufficient, by controlling the flywheel, to achieve satisfaction of the opposite
inequality. The angles of the wheel axes are determined by the position of point C on the trajectory

an
(1+n

"

tg(sz = _tg(Pls = 2,32

)

For example, let the trajectory of point C be specified in the form

N = Nesin[V(E-E)I, M’ = neveos[V(E—-E], M" = —v'n (4.26)

In this case, when sin?} > 0, an increase in the velocity of point C will be ensured if, for example, the angular acceleration
& is made non-positive (non-negative) for n<0 and m’ <0 (for >0 and m’ >0) in accordance with inequality (4.25).
On segments where m’ >0, the values of § cannot vanish according to (4.25) because gravity prevents acceleration on
these segments. Note that the singularities associated with the sign of v’ disappear for ¢ =0.

Next, let ov < 1. This means that the wavelength A = 2/v of the trajectory significantly exceeds the amplitude of
its oscillations (motion occurs almost along a straight line). Then

Py = =@y = _avzn

In other words, the angles the wheel axes make with the Cy axis should be small and proportional to the deviation of
the trajectory from the O£ axis. For n> 0 they will, as would be expected, satisfy the inequality @23 = —¢1; <0, which
is reversed for m <O0.

The method described for accelerating the snakeboard along the trajectory (4.26) does not provide the possibility
of starting the motion from the point where 1 =0, because the wheel axes are perpendicular to the crossbar and @ = 0
at that point. This difficulty can be avoided by slightly displacing the origin of coordinates and thereby the entire
programmed trajectory in a direction parallel to the trajectory so that we would have m # 0 at the initial instant of
time for the motion. Another technique is to set =~ (§ — & )7/’ in a small neighbourhood of the special point. Then
inequality (4.25) takes the form

I VH(E - EgM <-Mgn'(1 + 1) sin®

from which the required sign of the initial angular acceleration of the flywheel can be found.



330 Yu. F. Golubev / Journal of Applied Mathematics and Mechanics 70 (2006) 319-333

4.3b. Consider a trajectory of the form

1 g
P dae” 4.27)

j_
I
I
Il

€=E&p), n=p,

Trajectories of this type can be used when sin? >0 for upward motion along an incline, which corresponds to an
increase in the parameter p. Equation (4.20) takes the form

d(pv,) _ JH8" ~ Mg(1+E”)sin®d W)
dt uE ™ '

Thus, when sint > 0, for upward acceleration of the snakeboard, the inequality
168" > Mg(1 +&)sin®d (4.29)

must be satisfied, and to create negative acceleration of the snakeboard, the flywheel can be stopped entirely and the
effect of gravity can be utilized.

In particular, let £ =& sin(vp). Then &’ = —v?&. Therefore, if £ >0, negative angular acceleration of the flywheel
that satisfies inequality (4.29) is required for upward motion along an incline, and if £ <0, positive angular acceleration
is required. At the same time, if £=0, it is not possible to satisfy inequality (4.29). In addition, this inequality cannot
be satisfied in a small neighbourhood of the point where £=0. Therefore, when the snakeboard does not have any
initial velocity in the vicinity of this point, it will slide downward under the effect of gravity, despite the effect of
the maximum permissible absolute value of the angular acceleration of the flywheel, until |&| reaches a value that is
large enough for there to be the possibility of satisfying inequality (4.29). After this, whenever the snakeboard begins
an upward motion, it re-enters the vicinity of the point where & =0, obtains negative acceleration under the influence
of gravity, begins to descend, and so on. In other words, this example shows that in the vicinity of a point for which
£’ =0, there is a danger of self-excited oscillations of the snakeboard occurring. This nuisance can be avoided in two
ways. One way is to “run” past such points by building up sufficient speed in the section where |£”| takes a large value.
The other way is to design a trajectory for ascending from curves that have a fairly large value of |£”| with essentially
instantaneous reversal of the sign of £ on passing through the point where £=0. For example, they can be arcs of
circles with a fairly small radius of curvature that is consistent with the maximum permissible absolute value of the
angular acceleration of the flywheel.

4.3c. Because of the possibility mentioned in Section 4.3b of the appearance of self-excited oscillations of the
snakeboard on an inclined plane, it is more convenient to perform the complex manoeuvres prescribed for controlling
the centre of the crossbar on a horizontal plane. As an example, we shall obtain mathematical formulae for the motion
of point C when ¥ =0 along a figure-of-eight, given by the equations

.2
& = rcosp, TN = rsin2p, r = const; _1- = 2cosp(1 +2sin p)

312
voor( sinzp + 4cos22p)

We shall assume that at the initial instant of time p =0, point C has the coordinates & =r, n, =0, and the crossbar is
oriented perpendicular to the O axis so that {s(0) =m/2 + 0. Then, in the case of acceleration, the angular acceleration
of the flywheel must be negative for £> 0 and positive for £ <0. The angles of rotation of the wheel axes are specified
by the formulae

g0y, = —1gQy, = pi
v

They vanish only at the point where £ =1 =0. We see that the formulae for designing the control of the wheel axes are
not simple. The control design problem is further complicated by the fact that the current value of p can be determined
only by numerical integration of differential equation (4.23).



Yu. F. Golubev / Journal of Applied Mathematics and Mechanics 70 (2006) 319-333 331

5. Achieving maximum velocity

A simpler version of the control design can be obtained if the figure-of-eight is composed of two circles of identical
radius r. Let one of the circles have its centre at the point with coordinates £=r, n=0, and let the other circle have
its centre at the point with coordinates &= —r, m=0. These circles touch at the point where £=m=0. The parametric
equations of the curve as a whole have the form

r(l+cosp), 0<p<m 1/r, 0<p<m
& =<{-r(1+cosp), m<p<3m, m = rsinp; 1 =4-1/r, m<p<3n 5.1
r(1+cosp), 3nm<p<4n Y 1/r, 3r<p<4n

5.1. The control problem

Point C on the crossbar should move along the trajectory (5.1) on a horizontal plane (¢ =0). At the initial instant of
time ¢ =ty point C has coordinates &y =2r, 1 =0. The Cx axis is oriented in the direction of the O axis, and the Cy axis
is in the direction opposite to the O axis. The linear velocity of point C at the initial instant of time has the magnitude
ve = v and is directed along the Cx axis. It is required that the velocity of point C reach its maximum value at the
time ¢ =t of completion of its motion along the figure-of-eight, at which the robot arrives back at its initial position. At
the time f the angular velocity of the flywheel should be equal to zero. The angular position of the flywheel obtained
at the time 7 is of no significance.

5.2. Solution

We will restrict the permissible values of the angular acceleration of the flywheel to the range

—-£<p<e

Because the control is linear,” the maximum velocity increment is achieved for bang-bang control of the flywheel:
& = =*e. Therefore, the requirement that the angular velocity of the flywheel must be equal to zero at the end of the
crossbar acceleration manoeuvre means that the sum of the time intervals when ¢ = & must be equal to the sum of the
time intervals when $ = —e.

Equations (4.20) together with (4.22) and (4.23), which describe the control process under the conditions of an
increase in velocity, have the form

dv. Je v 2

- —go, =% p=2 W2-omed
_at——rul’ 2@,y = tg(pls—pv’ p= r’ H _M+r2 (5-2)

Thus, the angles of the wheel axes are piecewise-constant and specify the radius of curvature p, = £ of the trajectory.
The centre of curvature coincides with points having coordinates £ =r, =0 and & = —r, =0, respectively. We will use
7 to denote the time of action of the non-zero acceleration of the flywheel on the portion of the trajectory at 0 <p <,
and we will use 71 >0 to denote the difference between the time of action of non-zero acceleration when m<p < 3w
and the time 7. In addition, let

2
¥ — 2vgr T = 2mrp’
J o€ J o€
The time 71 of additional work of the flywheel when < p < 31 should be compensated when 37 < p < 4. Since the

effect of non-zero acceleration of the flywheel of either sign is restricted to the respective segment where the sign of
the radius of curvature of the trajectory is constant, the values of T and 7| are constrained by the system of inequalities

T+ 10 < TZ, T*+2T)(T+ T +(TH+ 11)2 < 2T2, (t*+47)T, + 31:? <7’
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If we take into account that, according to the meaning of the problem, T > 0 and 71 > 0, this system can be represented
in the equivalent form

01y, 0<T+71,<7,, O0<T,<7V, (5.3)

where

_ lt*+2(m-1)t]+ JIt* + 2(m - 1)1 + 4mT

. m=123
2[m* = 3(m-1)]

Ym

The quantity T+ 27 is proportional to the magnitude of the velocity acquired during complete passage along the figure
of eight. It is not difficult to see that the functions vy,(7) and y3(7) decay monotonically as T increases. Therefore, the
value T=0 will be optimal with respect to the maximum velocity attained. In addition, the inequality y2(0)>vy3(0)
holds. Therefore, the optimal value is

We find the maximum value of the velocity of point C at the end of the manoeuvre
27 e7,

v = v+ —55
i

The quantity 7 is defined by Eq. (5.4). Summarizing the result, we present a synthesis of the optimal control law for
the flywheel

0, 0<p<m
' (N Jge%f
. €& WMSp<p;, py ="+—+—5—-<3n
¢ = r o 2ru (5.5)
0, p;s<p<3mn
-€, 3n<p<dn

The combination of expressions (5.5) and (5.2) comprises the optimal control law for the snakeboard as a whole on
the chosen trajectory (5.1).

It may seem surprising that there is absolutely no control of the flywheel on the first portion of the trajectory at
0 < p <. This is especially strange when vy = 0. Then point C cannot move at all from its position. In the case when
vo = 0, the control law (5.5) should be regarded as the limiting law as T— 0. In practice this means that angular
accelaration should be imparted to the flywheel when vy = 0 over a very short time interval, and there should then
be a pause when point C enters the portion of the trajectory with negative curvature. The peculiarity of the optimal
control just noted is attributed to the fact that as the entry velocity onto the segment with negative curvature increases,
the time for control of the flywheel on this segment decreases. The total times the point C resides on the segments
with positive and negative curvatures should be equal. This peculiarity of the optimal control will not be observed if
the initial position of point C is placed at the origin of coordinates.

We will use k to denote the number of a single cycle of motion along the figure-of-eight. Then, the series of values
of 7*, corresponding to the initial cycle entry velocities, can be written as a recurrence relation

2+ ,/'c,’fz+ 127°

* — % =
Tes1 = Tp +27, = 3

The series obtained diverges as kK — co. Hence it follows that we can obtain any assigned velocity by applying the
control law obtained in a series of motion cycles in the figure-of-eight. Only the danger of the wheels slipping on the
supporting plane can prevent this.
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